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1 Lecture: Sources of Randomness and Observables

1.1 Probability Triple (Ω,F ,P)
When we model the randomness that occurs from physical experiments - meant in the broadest possible
interpretation of the word - we with to quantify these notion of randomness that makes explicit our
implicit common rational understanding of the notion of probabilities. Today, we review how we can
use the mathematical frameworks from set-theory and measure-theory to make explicit these intuitions
about randomness. In words,

probabilistic events take on a physical and geometric intuition, allowing that can be
manipulated under a well-studied framework.

Let’s make this precise by defining each constituent of the probability triple (Ω,F ,P), comprised of a
sample space, σ-algebra, and probability measure respectively.

Definition 1.1: Sample Space: Ω

The set of all possible outcomes of an experiment is called the sample space and is denoted by Ω.
We refer to specific outcomes as ω ∈ Ω.

Notice, this is a generic set without any structure. However, one is interested in being able to assign
probabilities to events - that are combinations of outcomes in Ω. Morally, we need to allow operations
such as

A ∪B, A ∩B, Ac,

where A,B ⊆ Ω, as this captures the statements of A and B, A or B occurring, and not A occurring
respectively. This motivates the following definition

Definition 1.2: σ-field: F

A collection F of subsets of Ω is called a σ-field if it satisfies the following:

a) ∅ ∈ F ;

b) If A1, A2, · · · ∈ F , then
⋃∞

i=1Ai ∈ F ;

c) If A ∈ F , then Ac ∈ F .

If A ⊆ Ω is such that A ∈ F , we say that A is a (measurable) event.

Warning. One is initially tempted to simply allow any subset of Ω, however, by measure-theoretic
considerations we would not be able to assign a probability measure to such a collection.
Specifically, it becomes possible to construct a pathological A ⊆ Ω such that P(A) = 0 and P(A) = 1.

Lastly, we consider a function that spits out the probability of any event in F :

Definition 1.3: Probability Measure: P

A probability measure P on (Ω,F) is a function P : F → [0, 1] satisfying

a) Event of Everything and Nothing: P(∅) = 0 and P(Ω) = 1;

b) Sum of Constituent Subevents: if A1, A2, · · · ∈ F are pairwise disjoint, then

P
( ∞⋃

i=1

Ai

)
=

∞∑
i=1

P(Ai).

This codifies the intuition that mathematical probability allows us to geometrize events.
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1.2 Basic Properties of the Probability Measure

One can easily derive the following properties from basic set-theory:

Lemma 1.1: Basic Properties of P

The following hold:

a) P(Ac) = 1− P(A);

b) If B ⊇ A, then
P(B) = P(A) + P(B \A) ≥ P(A);

c) P(A ∪B) = P(A) + P(B)− P(A ∩B);

Remark. This can be made more general.

Proof. Exercise.

In fact, for the proof of (b) there is a general idea used. We will briefly discuss the general technique in
the proof sketch of the following technical property of P:

Lemma 1.2: Continuity of P

Let (Ai)
∞
i=1 ↑ A, i.e.,

A =

∞⋃
i=1

Ai = lim
i→∞

Ai,

then P(A) = limi→∞ P(Ai).

Analogously, if (Bi)
∞
i=1 ↓ B, i.e.

B =

∞⋂
i=1

Bi = lim
i→∞

Bi,

then P(B) = limi→∞ P(Bi).

Proof. (Sketch) Disjointification. More specifically, we can see

A = A1 ∪ (A2 \A1) ∪ (A3 \A2) ∪ . . . .

In these two lemmas, we are careful about overcounting/overlaps. However, it is often useful to have a
coarse overestimate by not caring about overlaps, we record the following obvious but useful tool:

Lemma 1.3: Union Bound

Let (Ai) ⊆ F be a collection of events (finite or countably infinite). Then

P
(⋃

i

Ai

)
≤

∑
i

P(Ai).

Moral Analysis Intuition. One generally considers taking approximations of some object of interest
- in this setting this may probabilities, in other settings this may be functions. Analysis gives us many
tools to bound this error, but one should be as cheap/coarse as the application allows. Some upper
bounds can be extremely tight, but require a lot of assumptions to get working, when in reality one may
not need to wrestle with such edge cases for a desired result to hold. In words, it is often better to be
lazy and then tighten approximation bounds as needed, instead of the other way around.
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1.3 Random Variables, Distribution Function, and Multivariate Extensions

Now that we have recalled how one models probabilities, we focus on the reason we even modeled these
objects in the first place: random variables. Since we are not interested in the randomness of the
outcomes themselves, but rather the consequence of those random outcomes,

random variables allow us to quantify randomness to these consequences of interest.

Morally, one can think of such random variables as maps from Ω to R, which we denote X : Ω → R,
where we can assign probabilities numerical outcomes.

Naively, one would wish to assign a probability to every outcome ω ∈ Ω, that is one would like there to
be an f : R → [0, 1] such that

f(x) = P(X = x).

However, this approach fails in general (try and remember why!). However, we can always attach with
these outcomes a distribution function F : R → R

FX(x) = P{ω ∈ Ω : X(ω) ≤ x}.

Since P is a function on F , this motivates the following definition for a random variable

Definition 1.4: Random Variable

A random variable is a function X : Ω → R such that

{ω ∈ Ω : X(ω) ≤ x} ∈ F

for all x ∈ R. Such a function is said to be F-measurable.

Remark. One can show more rigorously that such a definition allows us to assign probabilities to
consequences of events as desired. Namely, we are able to make an association between F and B, the
Borel σ-algebra on R.

We will return to the focus on random variables in the next lecture, before then we will focus on the
motivating object of the definition for the random variable, the distribution function:

Definition 1.5: Distribution Functions

The distribution function of a random variable X is the function F : R → [0, 1] given by FX(x) =
P(X ≤ x) := P{ω ∈ Ω : X(ω) ≤ x}.

These are incredibly important associated functions to random variables. As such, we compile some
characterizations and consequences of the definition.

Lemma 1.4: Equivalent Characterization of Distribution Function

A function F : R → [0, 1] is a distribution function if and only if

1. limx→−∞ F (x) = 0, and limx→+∞ F (x) = 1;

2. If x < y, then F (x) ≤ F (y);

3. F is right-continuous, that is limh↓0 F (x+ h) = F (x)

Remark. This captures the usual visual intuition of a distribution function.

The following makes explicitly clear the remark from earlier, the distribution function really connects
the outputs of random variable X with the associated probability triple (Ω,F ,P).
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Lemma 1.5: Consequences of Definition

Let F be a distribution function of X. Then

a) P(X > x) = 1− F (x);

b) P(x < X ≤ y) = F (y)− F (x);

c) P(X = x) = F (x)− limy↑x F (y).

From these consequences, we recover how the probabilities tail events of our random variable - that is
the extreme values - can be quantified through the distribution function. In modern applications, we
are quite interested in recovering quantitative bounds on different types of events. We will recall some
basic non-asymptotic bounds on concentration in a future lecture, as well as hint at what is used at the
forefront of modern research. We now highlight how we can these distribution functions also allow us to
recover probabilities for the outcomes of collections of random variables - through random vectors.

Consider how a random variable X has an associated distribution function FX defined by FX(x) =
P(X ≤ x) for all x ∈ R. Analogously, suppose we have a random vector (X1, X2, . . . , Xn) : Ω → Rn,
where each component is in it’s own right is a random variable. Then, (X1, . . . , Xn) is a random vector
with the corresponding joint distribution function

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn),

where x1, . . . , xn ∈ R are variables.

Remark. There is a nice geometric interpretation of the above distribution function if the components
are independent of one another. More on this later.

Using boldface X and x to refer to the vector-valued versions of random variables and variables, and
x ≤ y to denote xi ≤ yi for all i ∈ [n], we have the following:

Definition 1.6: Joint Distribution Function

The joint distribution function of a random vector X = (X1, . . . Xn) on the probability space
(Ω,F ,P) is the function FX : Rn → [0, 1] given by FX(x) = P(X ≤ x) = P({ω ∈ Ω : X(ω) ≤ x})
for all x ∈ Rn.

One can easily define analogous consequences of Lemma 1.4 (guess!), as the construction did not depend
on the dimensionality of the random vector to be 1.

1.3.1 From Distribution Functions to Mass and Densities

We finish with recalling the connections with the distribution function with the familiar concepts heavily
emphasized in an undergraduate probability course: probability mass functions (discrete probabilities
and discrete random variables) and probability densities (continuous probabilities and continuous random
variables). Before recalling these notions, we make clear

the distinction between discrete vs. continuous is (mostly) negligible - when considering
the framework of measure theory.

While there are strong distinctions between discrete and continuous, when we are considering the frame-
work of probability theory, measure theory gives us a way to compress the main ideas and tools being
used. The distinction manifests in the computations carried out - and thus specific outcomes and infer-
ences from said computations - but morally the logic behind the tools used are unified by the notation
of framework of measure theory.
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Remark. In undergraduate probability, one goes through the exact same constructions twice, once for
discrete probabilities/random variables and again for the continuous analog. It should not be surprising
that since the logic is precisely the same that the differences are somewhat negligible once sufficiently
abstracted.

To make this point clear, suppose we wish to quantify the probability of a specific outcome, or in other
words an infinitesimal consequence.

Definition 1.7: Discrete Random Variables and Probability Mass Functions

The random variable X is called discrete if it takes on the values in some at most countable
subset of values of R, denoted {xi}∞i=1. Then, the discrete random variable X has a a probability
mass function f : R → [0, 1] given by

fX(x) = P(X = x).

Definition 1.8: Continuous Random Variables and Probability Density Functions

The random variable X is called continuous if its distribution function can be expressed as

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(u)du, x ∈ R,

for some f : R → [0,∞), an integrable function called the probability density function of X.

Notice, that this interpretation also holds for the discrete random variables, where the integral becomes
a summation: namely in the discrete setting

FX(x) = P(X ≤ x) =
∑

xi:xi≤x

P(X = xi).

In fact, one may have random variables that are a mixture of discrete and continuous random variables.
We note that these definitions are referring to properties of distribution functions, rather than
the random variables (the functions) themselves.

The extensions to random vectors is also immediate, we merely state the analogs to the probability mass
functions and density functions, respectively:

fX(x) = P(X1 = x1, . . . , Xn = xn),

and in the continuous case f ∈ L1
ac(Rn) such that

FX(x) = P(X ≤ x) =

∫ x1

−∞
· · ·

∫ xn

−∞
f(x1, . . . , xn)dx1 . . . dxn.

In more generality, one can unify all of these ideas with the following notation:

P(X ≤ x) = P({ω ∈ Ω : X(ω) ≤ x}) =
∫
ω:X(ω)≤x

dP(ω) =
∫
Ω

1ω:X(ω)≤xdP(ω).

where the notation dP(ω) refers to the probability mass/density that is assigned to the infinitessimal
outcome denoted by ω. The subscript on the integral denotes what event we are considering, and thus
we can interpret the integral as adding up the probabilities of all of the outcomes that fall under the
event defined by the random variable/vector - or in words the consequence in question. We will return
to these more general integrals in the next lecture.
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2 Lecture : Independence and Expectation

2.1 Conditional Probabilities and Independence

2.1.1 Probabilistic Events

First, let’s recall the notion of a conditional probability for a first pass - to codify how the probability of
an event depends on another:

Definition 2.1: Conditional Probability

Let (Ω,F ,P) be a probability triple. Let A,B ∈ F such that P(B) > 0. Then, the conditional
probability that A occurs given that B occurs is defined as

P(A | B) =
P(A ∩B)

P(B)
.

The follow follows directly from definition:

Lemma 2.1: Bayes’ Rule

Let A,B ∈ F such that P(A),P(B) > 0. Then, we have

P(A | B) =
P(B | A)P(A)

P(B)
.

In a similar fashion to the disjointification idea of before, using simple ideas from set-theory we can
consider a partition of Ω. Let {Bi}ni=1 be a partition of Ω such that for all i ̸= j,

Bi ∩Bj = ∅ and

n⋃
i=1

Bi = Ω.

This allows us to bin every ω ∈ Ω into exactly one set of this partition. Thus,

Lemma 2.2: Law of Total Probability

For any events A and B such that 0 < P(B) < 1,

P(A) = P(A | B)P(B) + P(A | Bc)P(Bc).

More generally, let B1, . . . , Bn be some partition of Ω such that P(Bi) > 0 for all i. Then

P(A) =
n∑

i=1

P(A | Bi)P(Bi).

Proof. (Scheme) Use a disjoint union and definition of conditional probability.

Directly from this Theorem comes the following important identity:

Lemma 2.3: Bayes Formula

Suppose that {Bi}ni=1 ⊆ F forms a partition of our sample space Ω. Then, we have that if A is a
fixed event such that P(A) > 0, then for any j ∈ [n]:

P(Bj | A) =
P(A ∩Bj)

P(A)
=

P(A | Bj)P(Bj)∑n
i=1 P(A | Bi)P(Bi)

.
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Definition 2.2: Independent Events

Let (Ω,F ,P) be a probability triple. Then A,B ∈ F are independent if

P(A ∩B) = P(A)P(B).

More generally, a family {Ai : i ∈ I} is called independent if

P
( ⋂

i∈J

Ai

)
=

∏
i∈J

P(Ai)

for all finite subsets J of I.

Remark. This does not imply that A ∩B = ∅.

Morally, this captures the notion of the outcome of an event as not being dependent on the other event.
Moreover, we may even weaken the notion of independent events to pairwise independence

Definition 2.3: Pairwise Independence

Let {Ai}i∈I ⊆ F such that for all i ̸= j we have

P(Ai ∩Aj) = P(Ai)P(Aj).

Then, we say that this family is pairwise independent.

These notions become incredible useful when trying to understand complicated probabilistic events.
Recall, last lecture we highlighted the general structure of probability spaces can be understood through
the lens of set theory and measure theory. Some arguments required decomposition arguments, or in
words breaking down an event into manageable and reasonable pieces. Conditional probabilities also
play a role on understanding relationships between events, and independence highlights a scenario where
it is very easy to manipulate the randomness. This will pop up when talking about some fundamental
properties of expectation and variance, more on this later.

2.1.2 Extending to Random Variables

Recall that we were able to explicitly connect the outputs of our random variables with their sources of
randomness through the distribution function. In light of the previous discussion, the following definition
is clear

Definition 2.4: Independent Random Variables

Let (Ω,F ,P) be a probability triple. Let X,Y : Ω → R be random variables with distribution
function FX : R → [0, 1] and FY : R → [0, 1]. Consider the joint distribution function FX,Y on
(X,Y ) : R× R → [0, 1]. We say X,Y are independent if and only if

FX,Y (x, y) = FX(x)FY (y) ∀x, y ∈ R.

Remark. We can read this as P(A ∩B) = P(A)P(B), where we define the events A and B accordingly.

Recall, that it suffices to consider the closed rays in R as this generates the Borel σ-algebra, and the
distribution function is a nice function that allows us to transfer our understanding from B to F . In
words, we recover independence in the sense of the last discussion for our random variables - and we use
the fact the distribution function carries the information of the randomness of our random variables for
this to work.
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For completeness, we list the other familiar notions of independence for random variables in the discrete
and continuous case, stating that these are special cases of the above definition (why?):

• Discrete Random Variables: X and Y are independent if and only if events

{X = x} and {Y = y}

are independent for all x, y;

• Continuous Random Variables: X and Y are independent if and only if events

{X ≤ x} and {Y = y}

are independent for all x, y.

We also note that one can recover the factorization of not just the joint distribution functions, but also
the joint probability mass functions and joint probability densities.

Remark. This factorization hints at an underlying geometric interpretation, where independence is pre-
cisely the setting of being able to take the tensor product of some spaces. In general, the product measure
marginalizes well, and it is precisely this product measure that reflects the notion of independence.

The nice outcomes of independence, and thus factorization, can truly be felt when considering outcomes
in expectation. Beforehand, we make note of a notion that will be useful when discussing limiting
phenomenon - such as the Central Limit Theorem

Definition 2.5: Independently Identically Distributed (IID) Random Variables

Let {Xi}i∈I be a collection of random variables on (Ω,F ,P). Then, we say that this collection is
independently identically distributed if they are independent of a collection of random variables,
and have the same distribution function.

This definition is quite natural, if we assume we are making independent samples of some quantity
governed by the same underlying distribution.

Remark. In modern regimes, we wish to relax this situation - for example in online learning - but we
can still stay close to this case in some suitable sense of close.

2.2 Moments, Expectation and Variance

One often wishes to have a single scalar descriptions of the distribution of values taken by some random
variable X : Ω → R. To produce such scalar descriptions to describe notions such as the center of mass,
spread of mass - given that we conceptualize the outputs of the random variable as mass - we use the
moments of a random variable

Definition 2.6: Moments of a Random Variable

Let X : Ω → R be a random variable, and n ∈ N. The p-th moment of X is defined as

E[Xp] :=

∫
Ω

(X(ω))pdP(ω).

As hinted by the notation, the expectation of X is the 1st moment of X. Explicitly:

E[X] :=

∫
Ω

X(ω)dP(ω).

A few remarks. First, we use the notation introduced at the end of the previous section alluding to the
use of the Lebesgue integral. Morally, one can still have the same intuitions of integration from Calculus,
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but this allows one to integrate more nasty functions - one can learn a more rigorous representation in
the Probability Theory sequence and/or a Graduate Analysis course. Second, it is intuitive that the
moments we have, the more specified our distribution is. This idea plays a role in estimating distri-
butions from empirical samples. Moreover, it is important to state that in modern applied probability,
the notion of Gaussian Universality essentially says that having the first two moments may suffice in
practice. These ideas are still being fleshed out in the community, with many open problems!

Notice that the expressions for the expectation of discrete and continuous random variables are just
special cases, respectively:

E[X] =
∑
x

xP({ω ∈ Ω : X(ω) = x}) and E[X] =

∫ ∞

−∞
xfX(x)dx,

where we explicitly use the probability mass function and probability density function.

2.2.1 Expectation Identities and Basic Properties

Before going through the standard properties, we mention some nice identities that can be used often:

• Expectation of an Indicator. Let A ∈ F be arbitrary. Then, if we define the indcator function
IA as

IA(ω) :=

{
1, ω ∈ A,

0, ω ̸∈ A,

then we have E[IA] = P(A). Explicitly, notice

E[IA] =
∫
Ω

IA(ω)dP(ω) =
∫
A

dP(Ω) = P(A).

In other words, we are able to convert the probability of an event into an expectation - giving a
dual perspective on how to manipulate these objects;

Remark. In fact, one can arbitrarily approximate any random variable through the use of linear
combinations of indicator functions in a dense fashion - take Probability Theory to see such an
idea.

• Tail Identity. Let X be a non-negative random variable. Then,

E[X] =

∫ ∞

0

P(X > x)dx.

To prove this, one uses Fubini-Tonelli’s Theorem∫ ∞

0

P(X > x)dx =

∫ ∞

0

∫
Ω

I{X>x}(ω)dP(ω) =
∫
Ω

∫ ∞

0

I{X>x}dxdP(ω) =
∫
Ω

X(ω)dP(ω) = E[X].

The only part that needs to be justified is switching the order of integration. Note, in the simple
continuous or discrete case this reduces to the usual computations.

We note that this identity generalizes even further, without proof. If X is any random variable,
and Φ is any increasing and differentiable function Φ, then we have

E[Φ(|X|)] = Φ(0) +

∫ ∞

0

Φ′(t)P[|X| > t]dt.

This is useful for proving properties for subgaussian random variables, which are an important class
of random variables in Statistics and Machine Learning.
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Remark. The proof follows essentially from an application of Fundamental Theorem of Calculus.

We now recall familiar properties that follow directly from nice properties of the integral.

Lemma 2.4: Basic Properties of Expectation

a) Linearity: Let X,Y be random variables and α, β ∈ R, then we have

E[αX + βY ] = αE[X] + βE[Y ];

b) Deterministic Random Variables: Suppose that P(X = b) = 1 for some b ∈ R, then
one has

E[X] = b.

c) Bounded Random Variables: Suppose that P(a ≤ X ≤ b) = 1 for some a, b ∈ R, then
one has

a ≤ E[X] ≤ b.

Proof. (Scheme) Follows from the definition of expectation.

In addition, suppose we have some measurable function g : R → R - measurable in our context means
some reasonable function - then we can easily compute the expectation of g(X) when X is a random
variable:

Lemma 2.5

Suppose that g : R → R is measurable, and X is a random variable. Then, we have the following
realizations of the expectation: First, if X is discrete then

E[g(X)] =
∑
x

g(x)P(X = x).

If continuous with probability density function fX , then

E[g(X)] =

∫ ∞

−∞
g(x)fX(x)dx.

More generally, we can write this as

E[g(X)] =

∫
Ω

g(X(ω))dP(ω) =
∫ ∞

−∞
g(x)dFX(x),

where in the last expression we use the distribution function FX(x) of random variable X.
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3 Lecture: Towards Multiple Random Variables

In the past two lectures, we build up the language for describing the randomness of a single random
variable. Namely, we recalled the notion of the probability triple, and how the distribution function allows
us to endow the outputs of a random variable with probabilities.

After initially finishing the discussion of variance, we will start considering how to understand the
relationships of multiple random variables beyond independence, and then recall different modes of
convergence that will allow one to make limiting statements.

3.1 Variance, Covariance, and Correlation

We previously covered the moments of a random variable and highlighted why the expectation - the first
moment - is a scalar of interest. Namely, this codifies the notion of center of mass. We now consider the
spread of mass.

Definition 3.1: Variance

Let X : Ω → R be a random variable. Then, the variance of X is defined as

Var[X] :=

∫
Ω

(X(ω)− E(X))2dP(ω).

This recovers the usual notions of variance for discrete and continuous random variables in an analogous
fashion to before (check!).

At a coarse glance, one would guess that there is a connections with the second moment of X. One could
then easily verify the following:

Lemma 3.1: Variance and Second Moments

Let X be a random variable with E[X],E[X2] <∞. Then,

Var(X) = E[X2]− (E[X])2

Proof. This follows from the nice properties of expectation. Explicitly:

Var(X) =

∫
Ω

(X(ω)−E[X])2dP(ω) =
∫
Ω

X(ω)2dP(Ω)−2E[X]

∫
Ω

X(ω)dP(ω)+(E[X])2 = E[X2]−(E[X])2

where we expanded out the square and used Lemma 2.2 a and b in the second equality.

Using the above proof as an example, understanding how to manipulate and control such quantities boils
down to understanding how to work with these integrals.

With the expectation and variance we are able to get a coarse picture of the behavior of our random
variableX. We now consider comparing two random variables on the same probability triple through
the covariance:

Definition 3.2: Covariance of Two Random Variables

Let X and Y be two random variables. Then, we define the covariance between these random
variables as

Cov(X,Y ) := E
[
(X − E[X])(Y − E[Y ])

]
= E[XY ]− E[X]E[Y ].
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Notice that the second equality follows from the exact same computation as in the proof of Lemma 3.1.
To make it explicitly clear that these are on the same probability triple, we can more explicitly write:

Cov(X,Y ) =

∫
Ω

(X(ω)− E[X])(Y − E[Y ])dP(ω).

This definition quantifies how much two random variables are mutually affected by the randomness
that generates both random variables. Moreover, we can also interpret the covariance as a quantitative
measure of how un-independent X and Y are.

If X and Y were independent, then the covariance would be 0, as E[XY ] = E[X]E[Y ]. In some contexts,
we wish to consider the correlation, which is a unitless measure.

Definition 3.3: Correlation

Let X and Y be two random variables, such that Var(X),Var(Y ) > 0. Then, we define the
correlation of these two random variables as

ρ(X,Y ) :=
Cov(X,Y )√
Var(X)Var(Y )

.

We often like these unitless or dimensionless measures as this allows us to make fair comparisons. We
note that for any X,Y random variables, we have that |ρ(X,Y )| ≤ 1. We will come back to this point
very soon.

3.1.1 Endowing Space of Random Variables with Hilbert Space Structure

Now the covariance, enjoys some nice properties:

Lemma 3.2: Elementary Properties of Covariance

Let X and Y be random variables. Then, we have that

a) Symmetry:
Cov(X,Y ) = Cov(Y,X);

b) Scaling: Let a ∈ R be arbitrary. Then

Cov(aX, Y ) = aCov(X,Y );

c) Recovering Variance:
Var(X) = Cov(X,X);

Moreover, if we have some finite collections {Xi}ni=1, {Yj}mj=1 of random variables, we also have

d) Addition Preserved:

Cov

( n∑
i=1

Xi,

m∑
j=1

Yj

)
=

n∑
i=1

m∑
j=1

Cov(Xi, Yj).

Hilbert Space Structure. In fact, we can see that these properties are enough to imbue the space of
random variables with second finite moment with nice structure. Namely, we can recover a Hilbert space
structure where the random variables X,Y ∈ L2(R). More explicitly:

since covariance is a bilinear, symmetric, and positive semi-definite real-valued function -
it is an Inner Product on the space of finite-second moment random variables.

13



It should not be lost on us how convenient such a structure is, as it allows us to use tools from Functional
Analysis and Linear Algebra to study random variables. In fact, this correspondence goes extremely deep
- for example the theory of Markov Chains and more generally Markov Processes rely on ideas from these
fields of mathematics to quantify the rates of ergodicity. Moreover, this Hilbert space structure will allow
us to use ideas such as projection - this will be the underlying idea that allows us to study the theory
of linear regression as regression functions can be thought of as projections into a function class given
sampled data.

In short, one exploits this structure in many settings, for our purposes we will only use this structure in
a simple fashion. Namely, |ρ(X,Y )| ≤ 1 will follow immediately from Cauchy-Schwartz which we recall
in generality :

Theorem 3.1: Cauchy-Schwartz Inequality

Let H be a Hilbert-space with real-valued inner product ⟨·, ·⟩ : H × H → R. Then, Cauchy-
Schwartz is

|⟨x, y⟩| ≤ ⟨x, x⟩ 1
2 ⟨y, y⟩ 1

2 , ∀x, y ∈ H.

In our setting, this becomes

|Cov(X,Y )| ≤
√
Var(X)

√
Var(Y ).

There are many proofs of this fundamental result (my favorite is using the discriminant of real polyno-
mials), but this should be covered in the Linear Algebra review, so we take it as fact.

Moreover, because we have this interpretation of covariance in connection with variances, we have the
follow restatement of the parallelogram law.

Corollary 3.1: Parallelogram Law for Random Variables

Let {Xi}ni=1 be a collection of random variables, then

Var

( n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2
∑
i<j

Cov(Xi, Yj).

Notice that as a consequence, if the collection of random variables are pairwise independent, this implies
the familiar rule:

Var

( n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi).

Before continuing on to the next topic, we also mention we can capture the pairwise covariances for a
finite group of random variables:

Definition 3.4: Covariance Matrix

Let {Xi}ni=1 be random variables. Then, the covariance matrix Σ is defined such that the i, j ∈ [n]
entries

Σij = Cov(Xi, Xj).

Remark. This is a positive semi-definite matrix, as it is a Gram Matrix.

The covariance matrix is of great importance for statistical applications, and the study of the eigenvalues
as well is very relevant. To get a more fine-grained understanding of a covariance matrix, and how we
can get a good empirical estimate of these from data, one should take Matrix Analysis.
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3.2 Marginalization, and Conditional Expectations

For simplicity sake, henceforth we will assume that our random variables are continuous random
variables. Moreover, we will focus on when we have a pair of random variables X,Y - many interesting
probabilistic statements concern pairs, and the ideas extend to any finite collection of random variables
through induction.

Recall, for continuous random variables, we have the following joint distribution function described by
integrating the joint density function

FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
f(u, v)dudv.

As previously discussed, for any sufficiently nice subset B ∈ R2 (namely a B ∈ B), we can recover the
probability of achieving such values by direct computation

P((X,Y ) ∈ B) =

∫ ∫
B

f(x, y)dxdy,

and this is derived from the joint distribution function.

A natural question is given joint information, can one recover the information of the distribution of one
of the component random variables. This is done through marginalization

Definition 3.5: Marginal Distributions

Let X and Y be random variables. Then, the marginal distribution functions of X and Y are
respectively denoted by

FX(x) = P(X ≤ x) = F (x,∞), FY (y) = P(Y ≤ y) = F (∞, y),

where we write F (x,∞) = limy→∞ F (x, y). Explicitly, this gives us

FX(x) =

∫ x

−∞

(∫ ∞

−∞
f(u, y)dy

)
dy,

which then gives us the marginal density function of X as

fX(x) =

∫ ∞

−∞
f(x, y)dy.

Analogously for the random variable Y .

We may also ask ourselves of the distribution of one random variable given another random variable.
This is especially of interest when trying to learn say a function g : X → Y given only access to the
sample {Xi, Yi}ni=1. First, we recall notions previously discussed in the setting of continuous random
variables.
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Definition 3.6: Conditional Distribution and Density Function

The conditional distribution function of Y given X = x is the function FY |X(· | x) given by

FY |X(y | x) =
∫ y

−∞

f(x, v)

fX(x)
dv

for any x such that fX(x) > 0. Sometimes this is denoted P(Y ≤ y | X = x).

The conditional density function of FY |X is thus defined by

fY |X(y | x) = f(x, y)

fX(x)
dv

for any x such that fX(x) > 0.

Note, this can be easily remembered by the usual notion of conditional probability: fY |X =
fX,Y

fX
.

3.2.1 Conditional Expectation and Variance

From the previous definitions, the following notion is immediate:

Definition 3.7: Conditional Expectation

The conditional expectation E[Y | X] is defined by

E[Y | X = x] =

∫ ∞

−∞
yfY |X(y | x)dy.

Since this is merely an expectation with respect to a probability distribution, all of the nice properties
for expectations also hold within this setting - for examples linearity of (conditional) expectation.

We can also define the notion of conditional variance

Definition 3.8: Conditional Variance

The conditional variance of Y , given that X = x, we have that

Var(Y | X = x) = E
[
(Y − E[Y | X = x])2 | X = x

]
.

Again, analogously to the unconditional case, we can decompose the variance into simpler terms:

Lemma 3.3: Conditional Variance Formula

Let Var(Y | X) be a function of X defined by the conditional variance. Then, we have the
conditional variance formula:

Var(Y) = E[Var(Y | X)] + Var(E[Y | X]),

where the expectation and variance are taken with respect to the distribution of X.

We don’t give proofs, but these notions are covered in most Probability textbooks.

Lastly, with the view of decomposing and reconstructing complex objects from simple ones, we recall the
following nice law

16



Theorem 3.2: Tower Property - Law of Total Probability

Let E[Y | X] denote the function of Y where the value at Y = y is given at E[Y | X = x]. Then,

E[Y ] = E[E[Y | X]].

Explicitly, for the special cases of discrete and continuous random variables, we respectively have

E[Y ] =
∑
x

E[Y | X = x]P{X = x},

and

E[Y ] =

∫ ∞

−∞
E[Y | X = x]fX(x)dx.

Remark. This is a very general property, and holds for all pairs of random variables, regardless of type.

Proof. We give the proof for the continuous case is analogous: Let ψ(X) := E[Y | X]. Then, we have

E(ψ(X)) =

∫
R
ψ(x)fX(x)dx =

∫
R

∫
R
yfY |X(y | x)dyfX(x)dx =

∫
R

∫
R
yfX,Y (x, y)dydx

=

∫
R
y

∫
R
fX,Y (x, y)dxdy =

∫
R
yfY (y)dy = E[Y ].

The third equality follows from definition of conditional probability and one can rigorously justify the
the integration switch through Fubini’s.

We finish with an example of where the tower property can be used to analyze random variables that is
neither discrete nor continuous.

Example of Generality of Tower Property

Let Ω = {T} ∪ {(H,x) : 0 ≤ x < 2π}. This codifies the event of a coin toss with probability
of heads p (this is a Bernoulli random variable with parameter p). If a head is tossed, then we
fling a rod on the ground and measure it’s angle (this is a uniform probability on [0, 2π)). This
probability space will allow us to mix discrete and continuous notions.

Let X : Ω → R be given by
X(T ) = −1, X((H,x)) = x.

This random variable takes values in {−1} ∪ [0, 2π), this is a continuous random variable except
for the point mass at −1. Compute E[X].

To do so, let A be the event that a tail turns up. Then, use the tower property:

E[X] = E[E[X | IA]]
= E[(X | IA = 1]P(IA = 1) + E[X | IA = 0]P(IA = 0)

= E[X | tail]P(tail) + E[X | head]P(head)
= −1 · q + π · p = πp,

where at the end we used the properties of the Bernoulli and Uniform distribution.
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4 Lecture: Limit Theorems Part 1 - Estimators for Moments

We slightly shift gears to discussing how one can get a handle on expressions of the flavor of in the long
run and on the average. These statements reflect the faith of how repeated iid experiments show less
and less random fluctuations as they settle down to some limit in some sense.

To make sense of the precise statements we can say about these kinds of expressions, we need to first
recall some of the different notions of convergence. Then, one can start trying to get rates of convergence
through some non-asymptotic statements, which will allow us to review Markov’s and Chebyshev’s
Inequalities (both are secretly Markov’s). Lastly, we will recall a few of the tools that are used to prove
the crowning jewel of an undergraduate Probability Theory course - that is the tools to prove Central
Limit Theorem.

4.1 Modes of Convergence

We recall the three modes of convergence of random variables taught in undergraduate courses, and
remark on how there is a chain of implications that in general only go in one direction. Before doing so,
we make it clear

this is just the tip of the iceberg, there are many notions of convergence of interest to
probabilists and applied probabilists. When one makes statements about convergence,

make sure to understand in what sense!

We begin with the strongest type of convergence, and progressively weaken the assumption on the mode
of convergence. In words, the implications will go in a downwards direction.

Definition 4.1: Almost Sure Convergence

Let {Xn}∞n=1 be a sequence of random variables. We say that Xn converges almost surely to X,

Xn
a.s.−−→ X, if there exists a set E ∈ F such that P(E) = 1 and for all ω ∈ E, we have that

Xn(ω) → X(ω).

Explicitly, this statement says that for every ϵ > 0, there exists an N := N(ω) ∈ N such that for all
n > N(ω) we have that

|Xn(ω)−X(ω)| < ϵ

We can also read off this statement as saying

P
(

lim
n→∞

Xn(ω) = X(ω)

)
= 1.

Now, we can loosen the requirement of stating convergence in realizations - that is where we fix the ω a
priori - to convergence in the overall probability of the random variables.

Definition 4.2: Convergence in Probability

Let {Xn}∞n=1 be a sequence of random variables. Then, we say that Xn converges in probability

to X, Xn
P−→ X, if for all ϵ > 0 we have that

lim
n→∞

P(|Xn −X| > ϵ) = 0.

The key difference here is that we are not fixing the set of samples where the limits agree, that is we can
consider a shifting sequence of events, as long as the limit holds.
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Lastly, we can further weaken the notion of convergence from the probability of deviation being zero,
to the statement being morally of the form ”eventually, the values of Xn will have a distribution that
resembles the distribution of X.”

Definition 4.3: Convergence in Distribution

Let {Xn}∞n=1 be a sequence of random variables. Then, we say that Xn converges in distribution
to X, Xn ⇒ X, if the distribution functions converge. That is, for all x ∈ R we have

lim
n→∞

FXn(x) = limFX(x).

Explicitly, this says limn P(Xn ≤ x) = P(X ≤ x) for all x.

4.1.1 Examples Showing Modes of Convergence are Distinct

Beyond the intuitive reasons why these are different notions of convergence, we give an explicit examples
of how these notions are different from one another.

In order to highlight some examples of how these definitions are distinct from one another, we need to
recall a tool that is used to make statements about events that occur infinitely often.

Lemma 4.1: Borel-Cantelli Lemma

Let {An}∞n=1 be a collection of events. The event that An happens infinitely often is given by

An i.o. = lim sup
n→∞

An =

∞⋂
n=1

⋃
k≥n

Ak.

Then, we have that

a) If
∑∞

n=1 P(An) <∞, then P(An i.o.) = 0;

b) If
∑∞

n=1 P(An) = ∞ and {An}∞n=1 are independent, then P(An i.o.) = 1.

To understand the notion of An i.o., it suffices to consider what happens when ω ̸∈
⋂

n≥1

⋃
k≥nAk. This

simply means that ω is only in finitely many An, and thus not infinitely often.

Proof. (Scheme) Statement a follows from rewriting P(An i.o.) = 0 as the equivalent P(N < ∞) = 1,
where

N =

∞∑
n=1

IAn

counts the number of occurrences of the events. Then, translating the assumption into saying E[N ] <∞,
using Fubini-Tonelli.

Statement b follows by looking at

P(An i.o.) = lim
k→∞

P
( ∞⋃

n=k

An

)
= 1− P

( ∞⋂
n=k

Ac
n

)
,

then using the independence assumption and the numerical inequality 1− x ≤ e−x to get P(∩∞
n=kA

c
n) =

0.

This Lemma is useful because it gives us a common way of proving almost sure convergence. Namely, if
we define

An := {ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ϵ},
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then P(An i.o.) = 0 corresponds with the event that Xn
a.s.−−→ X does not happen. With this in mind,

we can highlight the sought-after examples of why these definitions are strictly different.

Remark. This is also a common tool to prove different 0 − 1 laws and to make statements about tail
probabilities.

Example Showing Differences in Modes of Convergence

Example 1. Convergence in Probability is Weaker Than Almost Surely.

Let Xn ∼ Bernoulli( 1n ), n ≥ 1, be independent random variables, and let X ∼ 0. Then Xn
i.p−→ X

but not almost surely.

We have in probability convergence as P(|Xn −X| ≥ ϵ) = 1
n tends to 0 as n → ∞. Now, to see

that Xn does not converge almost surely, we apply Borel-Cantelli Lemma 1 with the An from
before in mind.

Example 2. Convergence in Distribution is Weaker Than In Probability.

Consider the uniform measure on the unit interval Ω = [0, 1]. Now, let Xn ∼ Uniform([0, 1]),
specifically allowing X2k(ω) = ω and X2k+1(ω) = 1−ω, for all k ∈ N. Then, allowing X(ω) = ω,
we see that Xn ⇒ X, but the probability of deviation P(|Xn − X| ≥ ϵ) continues to oscillate
between zero and a nonzero value.

4.2 Markov’s Inequality and Law of Large Numbers

We now remind ourselves of the simple but powerful inequality, that allows us to make our first limiting
statement of interest. Moreover, this will provide us with the first non-asymptotic inequalities one often
sees in Probability - Markov’s and Chebyshev’s inequalities.

Theorem 4.1: Markov’s Inequality

If X is a nonnegative random variable, then for any a > 0 we have:

P(X ≥ a) ≤ E[X]

a
.

Proof. Let X ≥ 0. For simplicity, assume that X is a continuous random variable (analogous proof holds
in general case). Then,

E[X] =

∫
Ω

X(ω)dP(ω) =
∫ ∞

0

xfX(x)dx ≥
∫ ∞

a

xfX(x)dx = a

∫ ∞

a

fX(x)dx = aP(X ≥ a).

From this, we can prove the generalized Chebyshev inequality, which reduces to the commonly known
Chebyshev’s as a special case.

Theorem 4.2: Generalized Chebyshev

Let X be a random variable with finite pth moment, given that p ≥ 2. Then, it follows for all
a > 0 that we have

P(|X − E[X]| ≥ a) ≤ E[|X − E[X]|p]
ap

.

Notice, when p = 2, we reduces to the familiar inequality:

P(|X − E[X]| ≥ a) ≤ E[|X − E[X]|2]
a2

=
Var(X)

a2
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Proof. We just apply Markov’s inequality:

P(|X − E[X]| ≥ a) = P(|X − E[X]|p ≥ ap) ≤ E[|X − E[X]|p]
ap

.

These inequalities allow us to have a quantifiable control over randomness with only access to the mean
and variance of our distribution of the random variable. Moreover, notice that if we have more moments,
we can have tighter control on our deviation from mean. These are statements about the tails of our
distribution, namely that they must exhibit specific rates of decay. This makes sense when thinking about
when a function is integrable. Morally, one should somewhat equate tail decay with concentration about
the mean, this idea is explored more when considering non-asymptotic statistics, and high-dimensional
phenomena.

Remark. If one has exponential tail decay, such as when considering Gaussian and Sub-Gaussian
random variables, one gets really nice guarantees.

As a corollary of Chebyshev’s inequality, we obtain the Weak Law of Large Numbers:

Corollary 4.1: Weak Law of Large Numbers

Let X1, X2, . . . be a sequence of iid random variables, each having finite mean and variance,
denoted E[Xi] = µ and Var(Xi) = σ2 for all i, respectively. Then, for any ϵ > 0:

P
{∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ϵ

}
→ 0, as n→ +∞.

For notation sake, define the sample mean as

µ̂n :=
1

n

n∑
i=1

Xi.

Then, this statement says that µ̂n
P−→ µ as n→ ∞. In words, our sample mean converges to the population

mean in some sense - that being in probability. The proof follows from Chebyshev’s inequality, and thus
also gives us a non-asymptotic handle on how this quantity concentrates around the mean.

Proof. Since Xi are independent, we have by the linearity and scaling properties of expectation and
variance the following:

E[µ̂n] = E
[
X1 + · · ·+Xn

n

]
= µ and Var(µ̂n) = Var

(
X1 + · · ·+Xn

n

)
=
σ2

n
.

Therefore, by Chebyshev’s inequality, we have that

P
{∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ϵ

}
= P{|µ̂n − µ| ≥ ϵ} ≤ σ2

nϵ2
.

Remark. This is a weak bound , namely that of a O( 1n ) term. However, the reason for the bound being
so weak is that this statement is made under very general assumptions. We only assume our sample
process is iid on a distribution with finite mean and variance. More assumptions result in much stronger
bounds.

Beyond rates of convergence one can obtain a stronger version of convergence of our sample mean to the
true mean, namely almost surely, with an additional technical assumption:
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Lemma 4.2: Strong Law of Large Numbers

Let X1, X2, . . . be a sequence of iid random variables. Consider the sample mean µ̂n as defined
above. Suppose that for all i, Xi has finite mean and variance, µ and σ2, as well as a assume
bounded fourth moment , E[X4

i ] <∞. Then, we have that µ̂n
a.s.−−→ µ as n→ ∞.

These Law of Large Numbers answer a central question in statistical inference:

Does the sample mean concentrate around the true mean? Can I recover this true mean
from my sample?

Moreover, the proofs give a non-asymptotic rate of convergence. This gives another avenue of application,
where one can use injected randomness in order to do - otherwise numerically beastly - computations.

4.2.1 Application: Monte Carlo Integration

We highlight a simple application of these limiting theorems. Consider wanting to evaluate the integral
of a function f : Rd → R on some set S. Now, suppose we have some probabilistic process that allows
us to sample from S, that is the evaluation of the integral takes on the following form:∫

S

f(x)dP(x),

where we are considering some probability measure P such that supp(P) = S.

Now, instead of going about integration through the use of meshes and numerical approximations in
the scheme of what would be done in a Numerical Analysis course - consider evaluating the integral
probabilistically. Why?

When d is large, then most deterministic integration methods have an error that depends
exponentially on dimension.

We will show that integrating with injected randomness will allow us to circumvent this exponential
dependence on dimension.

Consider a random point X that takes values in S according to law P. Then, we may interpret the
integral of f as the expectation: ∫

§
fdP = EX∼Pf(X).

Now, if we were to take iid samples from S according to µ, then by the Law of Large Numbers we have
that

1

n

n∑
i=1

f(Xi) → Ef(X)

almost surely as n→ ∞. Thus, intuitively, we can use the following Monte Carlo approximation for the
integral: ∫

S

fdP ≈ 1

n

n∑
i=1

f(Xi).

Now, if we have a sufficiently nice function and domain, for instance, say f : [0, 1] → R is continuous,
then the error rate can be shown to be O( 1√

n
) from an argument regarding the variance of the sample

mean. This is merely the decay rate of the standard deviation as n → ∞. notice that this rate has no
dependence on the dimension, which is the main appeal of these approximations - of course one has to
consider if the sampling truly reveals what we want to learn.
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4.3 Concentration Phenomena - Basic Concentration Inequalities

When talking about the generalized Chebyshev’s inequality, we noticed that with the pth moment, we
recover a tail decay rate on the order of O( 1

ap ). Explicitly:

P(|X − E[X]| ≥ a) ≤ E[|X − E[X]|p]
ap

= O

(
1

ap

)
.

These are polynomial rates of decay, but if all moments are finite we should expect an exponential tail
decay - something faster than polynomial for all degrees. This leads to modern non-asymptotic bounds
of the flavor of concentration inequalities.

We state a few that one will see some that may be familiar to some of you:

Theorem 4.3: Hoeffding’s Inequality

Let X1, . . . , Xn are iid random variables, and consider the sample mean µ̂n. Now, suppose that
for all i ∈ [n] we have that Xi ∈ [a, b] almost surely. Then, for all ϵ > 0 we have that

P(|µ̂n − µ| ≥ ϵ) ≤ 2 exp

(
− 2nϵ2

(b− a)2

)

Holding ϵ and the size of the interval constant in our minds, notice that this bound has an exponential
decay with respect to the sample size.

However, in this setting we are replace the variance σ2 = nVar(µ̂n) with a possibly much larger quantity
(b−a)2

4 . In words, there are two regimes of interest - this can be quantified and accounted for at a small
cost in the following:

Theorem 4.4: Bernstein’s Inequality

Let X1, . . . , Xn be independent random variables. Now, assume that |Xi − EXi| ≤ B for every
i ∈ [n]. Then, Bernstein’s Inequality states that for all ϵ > 0

P(|µ̂n − E[µ̂n]| ≥ ϵ) ≤ 2 exp

(
− nϵ2/2

σ2 +Bt/3

)
.

Both of these inequalities are proven through a Chernoff bound technique, roughly using a Laplace
transform and a Fenchel conjugate. More roughly, one can prove these using the Moment Generating
Functions we will introduce next lecture.

This is much beyond the scope of this review, however we make note that these ideas extend much
beyond the study of bounded random variables. More generally, we are able to get a handle of properly
scaled sums of sub Gaussian and sub Exponential random variables. Morally, these are random variables
who’s tails decay at least at the rate of a Gaussian or an Exponential, that is of the rate O(e−x2

) or O(e−x)
respectively. These are covered in any course in Machine Learning or High Dimensional Probability.

4.4 Convolutions and Sums of Random Variables

In anticipation of next lecture, we recall the distribution of the sum of two independent random variables
is given by the following operation:
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Definition 4.4: Convolution

Let X and Y be independent continuous random variables. Let fX(x) and fY (y) be the respective
densities, and FX(x) and FY (y) be the respective distribution functions. Then, convolution
recovers the densities and distribution function of X+Y . Explicitly, the operation of convolution
of distribution functions is defined as

FX+Y (a) = (FX ∗ FY )(a) :=

∫ ∞

−∞
FX(a− y)dF (y)

The operation of convolution of density functions is defined as

fX+Y (a) = (fX ∗ fY )(a) :=
∫ ∞

−∞
fX(a− y)fY (y)dy.

Remark. We focus on continuous random variables for ease of notation, but the same idea holds for
discrete random variables - and more general random variables as well.

Generally, the operation of convolution can be thought of as a weighted average of one function against
the other. In a sense, we are blending and smoothing out a function. In this setting, if we look at the
convolution of the density functions, we are essentially convolving with respect to the density of the
Y function. In signal processing, this is a natural operation, as convolutions become multiplications
when moving the Fourier domain. This is the central insight that will motivate the use of characteristic
functions in the proof of Central Limit Theorem - which will be introduced very soon.
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5 Lecture: Distribution Limit Theorems, and Basic Stochastic
Processes Terms

Recall, in the last lecture, we discussed the question of concentrating the sample mean around the true
mean. We now ask ourselves:

Can we recover the actual distribution from a finite sample?

The celebrated Central Limit Theorem will give the general answer to this question. However, before
we can discuss these theorem, we need to be able to make sense of the distribtion of the sum of random
variables, and how to analytically manipulate these objects.

5.1 Generating Functions and Characteristic Functions, Studying Sums

We got a result about a coarse representation - namely the expected value - from the sum of random
variables, properly scaled. We want to be able to get a distributional result, that is recover more than
just moment information but rather a full characterization of a limiting distribution. Again, we will focus
on independent random variables, as this gives us the framework to be able to actually analytically study
these sums without too many tools.

First, we recall the distribution of the sum of two independent random variables is given by the following
operation:

Definition 5.1: Convolution

Let X and Y be independent continuous random variables. Let fX(x) and fY (y) be the respective
densities, and FX(x) and FY (y) be the respective distribution functions. Then, convolution
recovers the densities and distribution function of X+Y . Explicitly, the operation of convolution
of distribution functions is defined as

FX+Y (a) = (FX ∗ FY )(a) :=

∫ ∞

−∞
FX(a− y)dF (y)

The operation of convolution of density functions is defined as

fX+Y (a) = (fX ∗ fY )(a) :=
∫ ∞

−∞
fX(a− y)fY (y)dy.

Remark. We focus on continuous random variables for ease of notation, but the same idea holds for
discrete random variables - and more general random variables as well.

Generally, the operation of convolution can be thought of as a weighted average of one function against
the other. In a sense, we are blending and smoothing out a function. In this setting, if we look at the
convolution of the density functions, we are essentially convolving with respect to the density of the
Y function. In signal processing, this is a natural operation, as convolutions become multiplications
when moving the Fourier domain. This is the central insight that will motivate the use of characteristic
functions in the proof of Central Limit Theorem - which will be introduced very soon.

Defining Moment Generating Functions and Characteristic Functions. The exponential func-
tion will be of much use when studying random variables. First, recall the Taylor expansion of the
exponential:

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · =

∞∑
j=0

xj

j!
.

This motivates the following definition:
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Definition 5.2: Moment Generating Function of X

Let X be a random variable. Then the moment generating function MX(t) of X is defined for
all t ∈ R by

MX(t) = E[etX ] =

∫
Ω

etX(ω)dP(ω) =
∫
R
etxdFX(x).

Remark. Moment generating functions are in one-to-one correspondence with the random variable
distributions, in some cases.

As hinted above, one can explicitly recover moments from this function, where the proof follows from a
Taylor expansion and the linearity of expectation:

Lemma 5.1: Moments and Moment Generating Functions

Let MX(t) be the moment generating function of X. Then, for any p ∈ N:

dp

dtp
MX(t)

∣∣∣∣
t=0

= E[Xp].

Recall, we have previously discussed how moment matching allows us to get a handle on some generating
distribution. Since moment generating functions are in one-to-one correspondence with the random
variable distributions, we are justified in that intuition!

Well-Defined? Moment Matching?

Moment generating functions are very useful, especially for discrete valued random variables.
However, this occurs only if convergence happens, which is not always guaranteed.

Moreover, if one considers the log-normal distribution, one can construct an example of the
moments matching for all moments, but the distributions do not coincide.

We have another object that uses the exponential where we augments the argument by i, the imaginary
number. Because |eitx| ≤ 1, we can side-step these convergence guarantee issues:

Definition 5.3: Characteristic Function

Let X be a random variable. Then, the characteristic function of X is defined as

φX(t) = E[eitX ] =

∫
Ω

eitX(ω)dP(ω) =
∫
R
eitxdFX(x).

Remark. There is a one-to-one correspondence between function distributions and characteristic func-
tions.

Lemma 5.2: Independence Play Nice With Transforms

If X and Y are independent random variables, then we have the following identities:

• Moment Generating Function Factorizes: For all t ∈ R

MX+Y (t) =MX(t)MY (t);

• Characteristic Function: For all t ∈ R

φX+Y (t) = φX(t)φY (t).
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Before continuing, notice that the Moment Generating Function and the Characteristic Function are
precisely a special case of the Laplace Transform and Fourier Transform seen in Analysis. If you have
seen this, this will make the following subsection immediate. Namely, in the language of signal processing,
we transform our objects into frequency space, work with manipulations there, then pull back into the
spatial domain.

5.1.1 Inversion and Continuity Theorems

The key reason one works with characteristic functions is because of how they are able to transform
the nasty expression of convolution into simple multiplication, as well. To make this clear, we recall the
inversion theorem which makes the remark after the definition clear.

First, we highlight the special case

Lemma 5.3: Special Case of Inversion Theorem

Let X be continuous with density function f and characteristic function ϕ. Then, at every x
where f is differentiable, we have

f(x) =
1

2π

∫ ∞

−∞
e−itxϕ(t)dt.

This is saying with the right scaling we can reconstruct our density by considering all of the contribu-
tions at each frequency. Recall, how we discussed that we can put a Hilbert space structure on our
random variables, this merely says that using some basis - the Fourier eigenbasis - we can decompose
and recompose our density with respect to this eigenbasis.

More generally, we have the following tehcnical theorem that is ommitted from Lecture:

Theorem 5.1: Inversion Theorem

Let X have distribution function F and characteristic function φ. Define F : R → [0, 1] by

F (x) =
1

2

{
F (x) + lim

y↑x
F (y)

}
.

Then

F (b)− F (a) = lim
N→∞

∫ N

−N

e−iat − e−ibt

2πit
φ(t)dt.

As a direct corollary we recover the one-to-one correspondence between characteristic functions and
distribution functions:

Corollary 5.1: One-to-One Correspondence, Characteristic and Distribution Func-
tion

Random variables X and Y have the same characteristic function if and only if they have the
same distribution function.

Now, recall the notion of convergence in distribution, that is if FXn
and FX are the corresponding

distribution functions to the respective random variables we say that Xn ⇒ X if

lim
n→∞

FXn(x) = FX(x).

Thus, we see that the point of this Corollary is that we can translate the convergence of the distributions
of a sequence of random variables to the convergence of the characteristic functions. This motivates the
next Theorem
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Theorem 5.2: Continuity Theorem

Suppose that F1, F2, . . . is a sequence of distribution functions with corresponding characteristic
functions φ1, φ2, . . . .

a) If Fn → F for some distribution function F with characteristic function φ, then φn(t) → φ(t)
for all t;

b) If ϕ(t) = limn→∞ ϕn(t) exists and is continuous at t = 0, then φ is the characteristic function
of some distribution function F , and Fn → F .

This just establishes rigorously the idea that is written above. These are in fact the tools that make the
Central Limit Theorem follow immediately.

5.2 Central Limit Theorem

We state the Central Limit Theorem. This follows naturally from the statements above.

Theorem 5.3: Central Limit Theorem - Assymptotic Normality

Let X1, X2, ... be a sequence of iid random variables, each having mean µ and variance σ2, both
finite. Let Sn :=

∑n
i=1Xi. Then, the distribution of

Sn − nµ√
σ2n

tends to the standard normal as n→ ∞. That is, for −∞ < a <∞, we have that

P
{
Sn − nµ√

σ2n
≤ a

}
→ 1√

2π

∫ a

−∞
e−x2/2dx

as n→ ∞. That is our scaled and centered sum converges in distribution to N (0, 1).

There is an extraordinary fact that one can immediately notice - and we mean extraordinary in the
full extent of the word:

Lack of Assumption on Distribution.

Notice that we only require finite variance - and thus mean - of the distribution of the random variable.
It cannot be understated how general of a statement this is.

Proof. (Idea) Work with the characteristic function of Sn−nµ√
σ2n

, and get those characteristic functions to

converge to the characteristic function of N(0, 1), which is explicitly of the form e−
1
2 t

2

. Then, use the
continuity theorem.

We note that there are many generalizations of the central limit theorem - as well as the law of large
numbers we have seen earlier. For example, one can deal with dependent variables and differently dis-
tributed variables, respectively.

In addition, we note that the Central Limit Theorem can also be interpreted as applying the correct
scaling limit . Scaling limits have a rich history in Statistical Physics where may consider the micro-
scopic interactions are scaled in a suitable fashion to recover some macroscopic observable. For example,
the random motions of molecules give rise to the observable temperature. Now, with that in mind, we
can notice that the 1√

n
is a type of scaling limit. The limit is strong enough to avoid diverging to some

infinity, while it is weak enough to not eliminate any interesting phenomena. Interesting stuff!
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More practically, the Central Limit Theorem gives rise to the confidence intervals that we are familiar
with from an introductory Statistics course. In general, the Central Limit Theorem is a powerful tool
used across science to give rigorous guarantees on experimental data - as we can more or less assume the
data comes as a sequence of iid random variables.

5.3 General Stochastic Process Families

We completely switch gears from the first portion of these notes. We begin by briefly mentioning what
a stochastic process is and highlighting some key families of stochastic processes. Then, at the end of
these notes, we will focus purely on Markov Chains, a very nice discrete-time stochastic process that
can serve as a toy-example for more complicated processes. We will focus in on a key theorem about
ergodic Markov Chains often discussed at the end of an undergraduate course on Probability Theory,
and if there is time highlight some connections with dynamics and PDE.

We first highlight the three many things to keep in mind when considering a stochastic process, which is
roughly a family of random variables indexed by some set T :

Definition 5.4: Stochastic Process

A stochastic process is a family of random variables {Xt}t∈T where for each t ∈ T , Xt : Ω → S
for some set S. One makes explicit the following things:

• State Space S: The possible values of Xt;

• Index Parameter T : How one indexes the random variables;

• Dependence Among Xt: How the random variables are related to one another.

We note morally we can regard T as a time index, either seen as discrete-time - such as when T = Z or
N - or continuous-time - such as when T = R or [0,∞).

There is a vast literature introducing and studying broad families of stochastic processes. Broad families
include markovian processes, martingales, stationary processes, renewal processes, queues, and diffusions.
One can learn more about these in a stochastic process course, and one can devote an entire career to
studying a subset of these processes. Moreover, some stochastic processes of interest are combinations
of these general families. Thus, we briefly recall some definitions and defining traits, and then focus in
on the process of Markov Chains next lecture.

First, a Markov Process is defined by probabilities of any particular future behavior only depend on
exact knowledge of our current state. That is, additional past knowledge does not change the
probabilistic behavior. Formally,

Definition 5.5: Markov Process

Let {Xt}t∈T be a stochastic process. Then this process is a Markovian Process one has

P(a < Xt ≤ b | Xt1 = x1, . . . , Xtn = xn) = P(a < Xt ≤ b | Xtn = xn)

whenever t1 < · · · < tn < t, for any a, b.

Remark. We are implicitly assuming S ⊆ R.

We note that with the assumption that S ⊆ R, one can consider any interval A on R - note this can be
generalized. Then, the function

P (x, s; t, A) := P(Xt ∈ A | Xs = s), t > s,
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is a transition probability function which codifies the probability of transitioning to within A given that
we start at state x at time s. When there are a finite or denumerable number of states, these processes
are called Markov chains and we can the transition probability function can be replaced with the familiar
transition matrix.

Second, we recall the notion of a martingale which is somewhat related to the idea of a Markov process,
albeit it is possible to have Markovian processes taht are not martingales. The intuition is that previous
history and information does not impact the expected current outcome of a martingale:

Definition 5.6: Martingale

Let {Xn}∞n=0 be a stochastic process. Then {Sn}∞n=0 is a margtingale associated with this stochas-
tic process, if for all n ≥ 0

a) Absolutely Integrable:
E[|Sn|] <∞

b) Expect No Change : Let Sn be some outcome connected with Xn. Then, we have

E[Sn+1 | X1, . . . , Xn] = Sn.

Remark. We assume discrete-time here for simplicity. In the continuous time case, one needs to consider
the notion of a filtration, that is an increasing sequence of σ-fields.

We mention that the other three stochastic processes are not often seen during an undergraduate course,
so we record them here with some of their intuitions. If time, we will mention them in lecture.

Stationary processes are characterized by the property that their finite-dimensional distributions are
invariant under time shifts. In words, they are stationary:

Definition 5.7: Stationary Processes

The process {Xt}t≥0, taking values in R is called (strongly) stationary if the families

{Xt1 , . . . , Xtn} and {Xt1+h, . . . , Xtn+h}

have the same joint distribution for all t1, . . . , tn and h > 0.

This also implies that X(t) has the same distribution for all t. We note that one can relax this as-
sumption to weakly or covariance stationary which asks for the process to have constant means, and an
autocovariance function, defined as

c(t, t+ h) := Cov(Xt, Xt+h)

to satisfy
c(t, t+ h) = c(0, h), ∀t, h ≥ 0.

That is, it is only a function of the gap in time. More explicitly,

Definition 5.8: Weakly Stationary Process

The process {Xt}t≥0 is called weakly stationary if for all t1, t2, and h > 0,

E(Xt1) = E(Xt2) and Cov(Xt1 , Xt2) = Cov(Xt1+h, Xt2+h).

In some cases, we are interested in the successive occurrences of events. A common special case one sees
is a Poisson process, but more generally such processes are called renewal or counting processes:
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Definition 5.9: Renewal Process

A renewal process {Nt}t≥0 is a process for which

Nt = max{n : Tn ≤ t}

where
T0 = 0, Tn = X1 + . . . Xn, for n ≥ 1,

where the Xm are iid non-negative random variables.

This describes N in terms of some underlying sequence {Xn}, but of course, one can describe this in
absence of the sequence, defining the underlying sequence implicitly:

Tn = inf{t : Nt = n}, Xn = Tn − Tn−1.

The last process we won’t explicitly define, but these are the Wiener processes or otherwise referred
to as Brownian motion. These are continuous time processes that exhibit two basic properties: time-
homogeneity and independent increments. These are often seen at the end of an introductory
stochastic processes course.
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6 Lecture: Basic Markov Chains

Recall, Markov chains are a special case of Markovian processes. These are stochastic processes with the
property that, conditional on their present value, the future is independent of the past. We will focus
on discrete-time Markov chains, with finite state space. Markov chains will be the focus because

Markov chains provide a good toy example for stochastic processes, and allow us to think
more about distributional convergence.

Before going into definitions, we first recall the notion of a directed graph, and how we can model Markov
chains in such a manner:

Definition 6.1: Directed Graph

A weighted directed graph is defined by three objects G = (V,E,W ):

• V = {vi}ni=1: This is the vertex set which comprises of members that have “relationships”
with one another;

• E = [n]× [n]: This is the edge set which comprises of all ordered pairs of nodes;

• W : E → R≥0: This is the edge weight function that assigns a weight to e ∈ E. These
individual weights are denoted as we. If we > 0, we draw a directed arrow from the first
node to the second node.

Remark. The weight function in this case can be written as a matrix.

With this in mind, a Markov chain can be modeled as a completely connected directed graph, where
the states play the role of the nodes/vertices and the probabilities of transition from one state to
another is captured in the edge weights. In fact, we can even codify the weights W as a matrix where
the (i, j) entry is given by the weight on the edge connected node i to j, this has a special meaning for
Markov chains.

6.1 Markov Chains

Before continuing from before we will make the following assumption about the Markov chain:

Definition 6.2: Homogeneous Markov Chain

A Markov chain is called homogeneous if

P(Xn+1 = j | Xn = i) = P(X1 = j | X0 = i)

for all n, i, j.

In words, this says that the transition probabilities do not change over time. We will henceforth assume
Markov chains are homogeneous, this is a common assumption unless specified.

Now, with directed graph in mind, we will first focus on the weight matrix of the directed graph, as this
will dictate the dynamics of a Markov chain. With the assumption of homogeneity in mind, this weight
matrix will be fixed for all time. For notational consistency, we will denote the weight matrix by P , as
it defines the transition probabilities between states:

P =

p11 . . . p1n
...

. . .
...

pn1 . . . pnn

 .
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Since we want to keep intuition of probabilities, we see this matrix has the following properties:

pij ≥ 0, for all i, j ∈ [n],
n∑

j=1

pij = 1.

This property is referred to row-stochastic. Henceforth, the matrix will be referred to as the transition
matrix.

Now, since random variables at a fixed time have a distribution for their outputs, we can associate with
every vertex a probability. Namely, we can have a distribution amongst the vertices, and in this setting
we will codify this distribution as a row vector whose entries sum to one

µt =
[
µt(v1) . . . µt(vn)

]
.

Here, µti expresses the probability that Xti has the value vti .

With the distribution at time t given as a row-vector and the transition probabilities as matrix, it is
natural assume that the distribution after one-time step can be computed as a row-matrix multiplication:

µtP = µt+1.

We ccan see this explicitly by carrying out the computation:

Row-Matrix Multiplication Evolves Distribution of Markov Chains by a Time Step

Fix our attention on some state vj at time step t + 1. Notice that if we consider the column
vectors of P

P =

 |
. . . p·,j . . .

|

 ,
the p·,j column corresponds with all of the probabilities of ending up at state vj . Then, notice
that

πt+1(vj) = πtp·,j =

n∑
i=1

πt(vi)pi,j .

Notice that the sum on the right is merely summing the probabilities of ending up at vj across
all states, scaled by the probability of being at those states at the previous time step. Since this
intuition holds for all vj , it is clear that row-matrix multiplication corresponds with taking a time
step into the future.

Thus, we can characterize the dynamics of the (homogenous) Markov Chain through the right-action of
the matrix on the distribution row vector.

As before, we are interested in the long-term behavior of the Markov Chain. In fact, we have access
to description of both the short term behavior, described by the transition matrix P , and longer-term
behaviors which are described in the following fashion:

Definition 6.3: n-Step Transition Matrix

The n-step transition matrix P (m,m + n) = (pij(m,m + n)) is the matrix of n-step transition
probabilities

pij(m,m+ n) = P(Xm+n = j | Xm = i).

Now, since we assumed that the Markov Chain is homogenous we have that P (m,m+1) = P . Moreover,
we have the following important fact:
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Theorem 6.1: Chapman-Kolmogorov Equations

pij(m,m+ n+ r) =
∑
k

pik(m,m+ n)pkj(m+ n,m+ n+ r).

Therefore, it follows that

P (m,m+ n+ r) = P (m,m+ n)P (m+ n,m+ n+ r),

and
P (m,m+ n) = Pn,

that is the nth power of the transition matrix P .

Remark. More generally, since we are working with a homogenous Markov chain, this says that the
family of transition matrices forms a Markov semigroup. In short, these give rise to a whole rise of tools
from dynamics to study these systems as well.

Proof. (Scheme) Use the fact that pij(m,m + n + r) = P(Xm+n+r = j | Xm = i), and P(A ∩ B | C) =
P(A | B ∩ C)P(B | C).

More succinctly, this theorem allows us to relate long-term with short-term in a succinct fashion:

Corollary 6.1

µ(m+n) = µ(m)Pn and µ(n) = µ(0)Pn.

Thus, we see that the

random evolution of the Markov chain is determined by the transition matrix P and the
initial mass function µ(0).

We note, from last time we recalled there are many models for random dynamics, but Markov chains
give a particularly simple model to analyze. We can envision this as a walker randomly moving from one
state to another according to the transition probabilities, with a memoryless assumption - the Markov
assumption. Moreover, under the assumption of homogeneity it follows that these transition probabilities
don’t change over time.

Because of the simplicity of this model, it follows that limiting phenomena of Markov Chains can often
be reduced to the algebraic properties of these transition matrices. The goal is to recover distributions
of the following form, as well as rates of convergence to such distributions if convergence occurs:

Definition 6.4: Stationary Distribution

We say π is a stationary distribution, if it satisfies the property that

πP = π.

Thus, we are interested in the existence and uniquness of the such a limiting distribution given some
initial distribution µ0:

lim
n→∞

µ0P
n = π.

Let’s consider an easy to compute example of a Markov Chain.

Markov Chain Example. Consider a system that consists of three states. Let the transition matrix
have the following form:

P =

 1
2

1
4

1
4

1
3

1
3

1
3

0 1
2

1
2

 .
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One can check that the transition matrix is row-stochastic.

Then, if we set µ0 =
(
1 0 0

)
, then, we have that

µ0P =
(
1 0 0

) 1
2

1
4

1
4

1
3

1
3

1
3

0 1
2

1
2

 =
(
1
2

1
4

1
4

)
= µ1.

More generally, at time t, by Corollary 6.1, we have that µt = µ0P
t, and for example one can compute

that

µ3 ≈
(
0.2778 0.3611 0.3611

)
, µ4 ≈

(
0.2593 0.3704 0.3704

)
, µ100 ≈

(
0.25 0.375 0.375

)
.

It appears that as t→ ∞, we are converging to some stationary distribution, in this case

µ∞ =
(
1
4

3
8

3
8

)
.

In fact, this is true under mild assumptions regardless of the initial distribution. Moreover, the
rate of convergence can be specified. Moreover, one can compute that this really is a left eigenvector
corresponding with eigenvalue 1, as hinted at before.

6.2 Markov Chain State Classifications, Ergodic Markov Chains

We now recall the conditions that ensure the basic limit theorem on Markov Chains. This boils down to
classifying the states of the Markov Chain, we want to make sense of the following definition

Definition 6.5: Ergodic State

A state is called ergodic if it is persistent, non-null, and aperiodic.

Each component has an intuitive meaning behind them. First, persistence morally says that we always
return to the state with probability 1

Definition 6.6: Persistent State

State i is called persistent if

P(Xn = i for some n ≥ 1 | X0 = i) = 1.

If this is strictly less than 1, then the state is called transient.

Now, while we can ensure that we return to a state with probability 1, we want to make sure that on
average it does not take forever. This is codified by the following notion. First, define

Tj = min{n ≥ 1 : Xn = j}

as the first time we visit j. If Tj = ∞, we say that we never visit. Now, one defines the following:

Definition 6.7: Mean Recurrence Time

The mean recurrence time µi of a state is defined as

µi := E[Ti | X0 = i].

This may be infinite even if i is persistent. Thus, to rule out this possibility, we define
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Definition 6.8: Non-Null State

For a persistent state i,

i is called

{
null, if µi = ∞,

non-null, if µi <∞.

These technical conditions simplify in the finite Markov chain case. Lastly, we make the following
technical assumption that forces uniqueness of the stationary distribution:

Definition 6.9: Aperiodic States

The period d(i) of a state is defined by d(i) = gcd(n : pii(n) > 0}. We call i periodic if d(i) > 1
and aperiodic if d(i) = 1.

Thus, we have the notion of an ergodic state.

In order to describe the entire system, we just have to make mild assumptions on how these states
interact. This is captured in the notion of communication. This merely means that if you’re at one state,
it is possible to get to another state, and vice versa:

Definition 6.10: Communicates and Intercommunicates

We say state i communicates with state j, i → j , if pij(m) > 0 for some m ≥ 0. Moreover, we
say i and j intercommunicate if i→ j and j → i, in which case we write i↔ j.

These were all statements about individual states of the Markov Chain, we have the natural definitions
about the entire system:

Definition 6.11: Ergodic Markov Chains and Irreducible Markov Chains

We say that the Markov Chain is

• Irreducible if for all i, j ∈ S we have i↔ j;

• Ergodic if for all i ∈ S we have that i is ergodic.

6.2.1 A Fundamental Limit Theorem for Markov Chains

We have the following Theorem, which we refer to as a Fundamental Theorem of Ergodic Markov Chains

Theorem 6.2: Fundamental Theorem

Let P be a transition matrix that describes the dynamics of an ergodic, irreducible Markov chain.
Then, regardless of the initial distribution µ0, there exists a unique stationary distribution π,
such that

lim
n→∞

µ0P
n = π.

Moreover, we can even characterize the stationary distribution in terms of the mean recurrence time
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Lemma 6.1: Characterizing Probability

For an irreducible aperiodic chain, we have that

pij(n) →
1

µj

as n→ ∞ for all i→ j.

Recalling that pij(n) := P(Xn = j | X0 = i), this says that regardless of i, we end up at the same
stationary distribution. In other words, the chain forgets the origin, and we have that the convergence
to the stationary distribution regardless of how we initialize the initial distribution.

6.3 Quantifying Convergence of Distributions

As applied mathematicians, we are perhaps unsatisfied with the presentation of Markov chains given so
far. Namely, these statements are asymptotic, and we often want to ask ourselves if we can give robust
guarantees on how long one has to run a system before being at stationary. In fact, this is a current
field of research, where one may see this from a Variational Bayesian Perspective or an Optimization
Perspective. As a common mantra from Analysis:

If we wish to give rates of convergence, we need to specify in what sense!

Thus, we close with highlighting a few different notions of metric or distance that are often used to
describe the distance between distributions.

Definition 6.12: Total Variation Distance

Consider some measurable space (Ω,F) with two probability measures/distributions that can be
defined on this space, namely P and Q. Then the total variation distance can be defined as

dTV := sup
A∈F

|P (A)−Q(A)|.

Intuitively, this gives a worse-case difference between the two distributions. It returns the largest possible
difference in how the distributions assign probabilities to measurable events.

Definition 6.13: Kullback-Leibler (KL) Distance

Consider some measurable space (Ω,F) with two probability measures/distributions that can be
defined on this space, namely P and Q. Then the KL-Distance is defined as

DKL(P∥Q) =

∫
Ω

log

(
P (dω)

Q(dω)

)
dP (ω).

In a more special case setting, namely a discrete probability space, we have that

DKL(P∥Q) =
∑
ω∈Ω

P (ω) log

(
P (ω)

Q(ω)

)
.

In other words, this is the expectation of the logarithmic difference between the probability
distributions P and Q with respect to the distribution P .

This distance, otherwise called relative entropy, can be interpreted as the expected excess surprise from
using Q as a model when the actual distribution is P . While not a metric, this finds many uses in an
information-theoretic context.

Remark. This is not a metric, it is merely a distance.
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Definition 6.14: Wasserstein Distances

Suppose that we have a measurable space (Ω,F) with two probability measures P and Q. Then
the p-Wasserstein distance on Ω is defined as

Wp(P,Q) := inf
Π∈U(P,Q)

(∫
Ω×Ω

d(x, y)pdΠ(x, y)

) 1
p

,

where d is the distance on Ω, and U denotes all possible couplings. A coupling dictates a trans-
portation plan, or in other words a way of moving one distribution to another.

This notion may take many times for it to sink in what this truly means but the intuition lies on how
one can transport a sand pile from one orientation to another. This is far beyond the scope of what is
expected, but this is a common distance used in many modern applications. Feel free to ask me more
about it after lecture.

With these notions of distances, one can then begin to make statements about what kind of assumptions
ensure specific rates of convergence, which we do not state here.

In closing, overall there is a lot of incredibly interesting mathematical arguments used to get a handle on
really important applications - however at the heart of it all are fundamental fields such as Probability
Theory, Linear Algebra, and Statistics. It is always worth going back to your basics and sharpening your
fundamentals!
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